Flows Associated to Tangent Processes on the Wiener Space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flows Associated to Tangent Processes on the Wiener Space

We prove, under certain regularity assumptions on the coefficients, that tangent processes (namely semimartingales dξτ = adxτ + bdτ where a is an antisymmetric matrix) generate flows on the classical Wiener space. Main applications of the result can be found in the study of the geometry of path spaces.

متن کامل

Rotations and Tangent Processes on Wiener Space

The paper considers (a) Representations of measure preserving transformations (“rotations”) on Wiener space, and (b) The stochastic calculus of variations induced by parameterized rotations {Tθw, 0 ≤ θ ≤ ε}: “Directional derivatives” (dF (Tθw)/dθ)θ=0, “vector fields” or “tangent processes” (dTθw/dθ)θ=0 and flows of rotations.

متن کامل

new semigroup compactifications via the enveloping semigroups of associated flows

this thesis deals with the construction of some function algebras whose corresponding semigroup compactification are universal with respect to some properies of their enveloping semigroups. the special properties are of beigan a left zero, a left simple, a group, an inflation of the right zero, and an inflation of the rectangular band.

15 صفحه اول

Cumulants on the Wiener Space

We combine infinite-dimensional integration by parts procedures with a recursive relation on moments (reminiscent of a formula by Barbour (1986)), and deduce explicit expressions for cumulants of functionals of a general Gaussian field. These findings yield a compact formula for cumulants on a fixed Wiener chaos, virtually replacing the usual “graph/diagram computations” adopted in most of the ...

متن کامل

Stochastic flows associated to coalescent processes

We study a class of stochastic flows connected to the coalescent processes that have been studied recently by Möhle, Pitman, Sagitov and Schweinsberg in connection with asymptotic models for the genealogy of populations with a large fixed size. We define a bridge to be a rightcontinuous process (B(r), r ∈ [0, 1]) with nondecreasing paths and exchangeable increments, such that B(0) = 0 and B(1) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1999

ISSN: 0022-1236

DOI: 10.1006/jfan.1999.3418